Sciact
  • EN
  • RU

Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2019, Volume: 16, Pages: 1640-1653 Pages count : 14 DOI: 10.33048/SEMI.2019.16.115
Tags Asymptotic expansion; Integral manifold; Singularly perturbed system; Slow motions
Authors Kononenko L.I. 1
Affiliations
1 Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russian Federation

Abstract: A constructive algorithm is proposed for calculating the coefficients of the asymptotic expansion of a slow motions integral manifold represented in parametric form. The existence and uniqueness theorem is proven for a parametrized integral manifold of a singularly perturbed system in a degenerate case. © 2019 Sobolev Institute of Mathematics.
Cite: Kononenko L.I.
Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.1640-1653. DOI: 10.33048/SEMI.2019.16.115 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000496948800001
Scopus: 2-s2.0-85083401988
OpenAlex: W3015593887
Citing: Пока нет цитирований
Altmetrics: