Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2019, Volume: 16, Pages: 1640-1653 Pages count : 14 DOI: 10.33048/SEMI.2019.16.115 | ||
Tags | Asymptotic expansion; Integral manifold; Singularly perturbed system; Slow motions | ||
Authors |
|
||
Affiliations |
|
Abstract:
A constructive algorithm is proposed for calculating the coefficients of the asymptotic expansion of a slow motions integral manifold represented in parametric form. The existence and uniqueness theorem is proven for a parametrized integral manifold of a singularly perturbed system in a degenerate case. © 2019 Sobolev Institute of Mathematics.
Cite:
Kononenko L.I.
Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.1640-1653. DOI: 10.33048/SEMI.2019.16.115 WOS Scopus OpenAlex
Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.1640-1653. DOI: 10.33048/SEMI.2019.16.115 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000496948800001 |
Scopus: | 2-s2.0-85083401988 |
OpenAlex: | W3015593887 |
Citing:
Пока нет цитирований