Sciact
  • EN
  • RU

Categoricity for Primitive Recursive and Polynomial Boolean Algebras Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2018, Volume: 57, Number: 4, Pages: 251-274 Pages count : 24 DOI: 10.1007/s10469-018-9498-1
Tags Boolean algebra; Boolean algebra computable in polynomial time; computable presentation; primitive recursively categorical Boolean algebra
Authors Alaev P.E. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russian Federation

Abstract: We define a class KΣ of primitive recursive structures whose existential diagram is decidable with primitive recursive witnesses. It is proved that a Boolean algebra has a presentation in KΣ iff it has a computable presentation with computable set of atoms. Moreover, such a Boolean algebra is primitive recursively categorical with respect to KΣ iff it has finitely many atoms. The obtained results can also be carried over to Boolean algebras computable in polynomial time. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Alaev P.E.
Categoricity for Primitive Recursive and Polynomial Boolean Algebras
Algebra and Logic. 2018. V.57. N4. P.251-274. DOI: 10.1007/s10469-018-9498-1 WOS Scopus OpenAlex
Original: Alaev P.E.
Категоричность для примитивно рекурсивных и полиномиальных булевых алгебр
Алгебра и логика. 2018. Т.57. №4. С.389-425.
Identifiers:
Web of science: WOS:000452074900001
Scopus: 2-s2.0-85056902083
OpenAlex: W2901392137
Citing:
DB Citing
Scopus 12
OpenAlex 12
Web of science 11
Altmetrics: