Generalized Angles in Ptolemaic Möbius Structures Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2018, Volume: 59, Number: 2, Pages: 189-201 Pages count : 13 DOI: 10.1134/S0037446618020015 | ||
Tags | angular metric; generalized angle; Möbius structure; Möbiusinvariant metric; Ptolemaic semimetric; Ptolemy’s inequality; quasimeromorphic mapping; quasimöbius mapping | ||
Authors |
|
||
Affiliations |
|
Abstract:
We show that each Ptolemaic semimetric is Möbius-equivalent to a bounded metric. Introducing generalized angles in Ptolemaic Möbius structures, we study the class of multivalued mappings F: X → 2Y with a lower bound on the distortion of generalized angles. We prove that the inverse mapping to the coordinate function of a quasimeromorphic automorphism of ℝ̅n lies in this class. © 2018, Pleiades Publishing, Ltd.
Cite:
Aseev V.V.
Generalized Angles in Ptolemaic Möbius Structures
Siberian Mathematical Journal. 2018. V.59. N2. P.189-201. DOI: 10.1134/S0037446618020015 WOS Scopus OpenAlex
Generalized Angles in Ptolemaic Möbius Structures
Siberian Mathematical Journal. 2018. V.59. N2. P.189-201. DOI: 10.1134/S0037446618020015 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000430858600001 |
Scopus: | 2-s2.0-85046664966 |
OpenAlex: | W2802411799 |