Sciact
  • EN
  • RU

Generalized Angles in Ptolemaic Möbius Structures Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 2, Pages: 189-201 Pages count : 13 DOI: 10.1134/S0037446618020015
Tags angular metric; generalized angle; Möbius structure; Möbiusinvariant metric; Ptolemaic semimetric; Ptolemy’s inequality; quasimeromorphic mapping; quasimöbius mapping
Authors Aseev V.V. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: We show that each Ptolemaic semimetric is Möbius-equivalent to a bounded metric. Introducing generalized angles in Ptolemaic Möbius structures, we study the class of multivalued mappings F: X → 2Y with a lower bound on the distortion of generalized angles. We prove that the inverse mapping to the coordinate function of a quasimeromorphic automorphism of ℝ̅n lies in this class. © 2018, Pleiades Publishing, Ltd.
Cite: Aseev V.V.
Generalized Angles in Ptolemaic Möbius Structures
Siberian Mathematical Journal. 2018. V.59. N2. P.189-201. DOI: 10.1134/S0037446618020015 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000430858600001
Scopus: 2-s2.0-85046664966
OpenAlex: W2802411799
Citing:
DB Citing
Scopus 14
OpenAlex 9
Web of science 11
Altmetrics: