Sciact
  • EN
  • RU

Integro-Local Limit Theorems for Compound Renewal Processes Under Cramér’s Condition. II Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 4, Pages: 578-597 Pages count : 20 DOI: 10.1134/S003744661804002X
Tags compound renewal process; Cramér’s condition; deviation function; integro-local theorem; large deviations; renewal measure; second deviation function
Authors Borovkov A.A. 1 , Mogulskii A.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: We prove the statements that are formulated in the first part of this paper. As an auxiliary proposition, we establish an integro-local theorem for the renewal measure of a two-dimensional random walk. © 2018, Pleiades Publishing, Ltd.
Cite: Borovkov A.A. , Mogulskii A.A.
Integro-Local Limit Theorems for Compound Renewal Processes Under Cramér’s Condition. II
Siberian Mathematical Journal. 2018. V.59. N4. P.578-597. DOI: 10.1134/S003744661804002X WOS Scopus OpenAlex
Original: Боровков А.А. , Могульский А.А.
Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. II
Сибирский математический журнал. 2018. Т.59. №4. С.736–758. DOI: 10.17377/smzh.2018.59.402 РИНЦ
Identifiers:
Web of science: WOS:000443717700002
Scopus: 2-s2.0-85053019140
OpenAlex: W2810267493
Citing:
DB Citing
Scopus 16
OpenAlex 14
Web of science 6
Altmetrics: