Sciact
  • EN
  • RU

Orthogonality Relations for a Stationary Flow of an Ideal Fluid Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 4, Pages: 731-752 Pages count : 22 DOI: 10.1134/S0037446618040158
Tags Euler equations; ideal fluid; integral momenta; stationary flow
Authors Sharafutdinov V.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: For a real solution (u, p) to the Euler stationary equations for an ideal fluid, we derive an infinite series of the orthogonality relations that equate some linear combinations of mth degree integral momenta of the functions uiuj and p to zero (m = 0, 1,..). In particular, the zeroth degree orthogonality relations state that the components ui of the velocity field are L2-orthogonal to each other and have coincident L2-norms. Orthogonality relations of degree m are valid for a solution belonging to a weighted Sobolev space with the weight depending on m. © 2018, Pleiades Publishing, Ltd.
Cite: Sharafutdinov V.A.
Orthogonality Relations for a Stationary Flow of an Ideal Fluid
Siberian Mathematical Journal. 2018. V.59. N4. P.731-752. DOI: 10.1134/S0037446618040158 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000443717700015
Scopus: 2-s2.0-85052988799
OpenAlex: W2891920863
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 1
Altmetrics: