On coordinate vector-functions of quasiregular mappings Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2018, Volume: 15, Pages: 768-772 Pages count : 5 DOI: 10.17377/semi.2018.15.062 | ||
Tags | Conformal capacity of condenser; Generalized angle; Mapping of bounded angular distortion; Quasiregular map; Teichmüller's ring | ||
Authors |
|
||
Affiliations |
|
Abstract:
Let f: Rn → Rn = Rk × Rn-k (1 ≤ k ≤ n - 1) be a K-quasiregular mapping and π: Rn → Rk denotes the canonical projection. Then we obtain a lower estimate for the distortion of the values of generalized angles in Rk under the multy-valued function F = f-1 π-1: Rk → Rn. This estimate is Möbius invariant and depends only on K and n. © 2018 Sobolev Institute of Mathematics.
Cite:
Aseev V.V.
On coordinate vector-functions of quasiregular mappings
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.768-772. DOI: 10.17377/semi.2018.15.062 WOS Scopus
On coordinate vector-functions of quasiregular mappings
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.768-772. DOI: 10.17377/semi.2018.15.062 WOS Scopus
Identifiers:
Web of science: | WOS:000454860200004 |
Scopus: | 2-s2.0-85073257054 |