Sciact
  • EN
  • RU

The coefficient of Quasimöbiusness in ptolemaic spaces Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2018, Volume: 15, Pages: 246-257 Pages count : 12 DOI: 10.17377/semi.2018.15.023
Tags (power) quasimöbius mapping; Möbius mapping; Ptolemaic space; Quasimöbius mapping; Quasisymmetric mapping; Stability theorem
Authors Aseev V.V. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Koptyuga, 4, Novosibirsk, 630090, Russian Federation

Abstract: In ptolemaic spaces the class of η-quasimöbius mappings f: X → Y with control function η(t) = C max[tα, t1/α] may be completely characterized by the inequality K-1 ≤ (1 + log P(fT))/(1 + log P(T)) ≤ K for all tetrads T ⊂ X where P(T) denotes the ptolemaic characteristic of a tetrad. The number K has properties quite similar to those of coefficients of quasiconformality, so the concept of K- quasimöbius mapping may be introduced. In particular, the stability theorem is proved for (1 + ε)-quasimöbius mappings in Rn. © 2018 Sobolev Institute of Mathematics.
Cite: Aseev V.V.
The coefficient of Quasimöbiusness in ptolemaic spaces
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.246-257. DOI: 10.17377/semi.2018.15.023 WOS Scopus
Identifiers:
Web of science: WOS:000438412200023
Scopus: 2-s2.0-85073218992
Citing:
DB Citing
Scopus 3
Web of science 2
Altmetrics: