Sciact
  • EN
  • RU

On the connection between the generalized Riemann boundary value problem and the truncated Wiener-Hopf equation Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2018, Volume: 15, Pages: 412-421 Pages count : 10 DOI: 10.17377/semi.2018.15.037
Tags Convolution equation; Factorization indices; Factorization of matrix functions; Problem of Markushevich; Riemann boundary value problems; Stability; Unique; ℝ-linear problem
Authors Voronin A.F. 1
Affiliations
1 Sobolev Institute of Mathematics, Pr. Koptyuga, 4, Novosibirsk, 630090, Russian Federation

Abstract: In this paper we an equivalen find a connection between the generalized Riemann boundary value problem (also known under the name of the Markushevich boundary problem or the ℝ-linear problem) and convolution equation of the second kind on a finite interval. © 2018 Sobolev Institute of Mathematics.
Cite: Voronin A.F.
On the connection between the generalized Riemann boundary value problem and the truncated Wiener-Hopf equation
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.412-421. DOI: 10.17377/semi.2018.15.037 WOS Scopus
Identifiers:
Web of science: WOS:000438412200037
Scopus: 2-s2.0-85066280433
Citing:
DB Citing
Scopus 3
Web of science 3
Altmetrics: