Sciact
  • EN
  • RU

Constructing explicit estimators in nonlinear regression problems Full article

Journal Theory of Probability and its Applications
ISSN: 0040-585X , E-ISSN: 1095-7219
Output data Year: 2018, Volume: 63, Number: 1, Pages: 22-44 Pages count : 23 DOI: 10.1137/S0040585X97T988897
Tags Asymptotic normality; Explicit estimator; Initial estimator; Nonlinear regression; One-step estimator; α n -consistency
Authors Linke Y.Y. 1,2 , Borisov I.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Novosibirsk State University, Novosibirsk, Russian Federation

Abstract: In the paper, we propose a general approach to constructing explicit consistent estimators for some classes of nonlinear regression models. These estimators can be used as initial ones in one-step estimation procedures capable of delivering, in a sense, optimal estimators in an explicit form. © 2018 Society for Industrial and Applied Mathematics.
Cite: Linke Y.Y. , Borisov I.S.
Constructing explicit estimators in nonlinear regression problems
Theory of Probability and its Applications. 2018. V.63. N1. P.22-44. DOI: 10.1137/S0040585X97T988897 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000448195400002
Scopus: 2-s2.0-85057338140
OpenAlex: W2898427130
Citing:
DB Citing
Scopus 16
OpenAlex 24
Web of science 11
Altmetrics: