Some problems of regularity of f-quasimetrics Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 15, Pages: 355-361 Pages count : 7 DOI: 10.17377/semi.2018.15.032 | ||||
Tags | Convergence; Distance function; F-quasimetric; Interior and closure of a set; Open set; Separation axioms; Weak symmetry | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
We get a new proof for validity of T4-axiom of separation for weak symmetric f-quasimetric spaces. Using this proof we get T4- property for more general classes of f-quasimetric spaces. We construct the symmetric (q,q)-quasimetric space (X,d) such that distance function d(u,v) is continuous to each variables but (ρ(x0,xn) + ρ(y0; yn)) 0 ρ(xn,yn) = ρ(x0,y0). © 2018 Sobolev Institute of Mathematics.
Cite:
Greshnov A.V.
Some problems of regularity of f-quasimetrics
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.355-361. DOI: 10.17377/semi.2018.15.032 WOS Scopus
Some problems of regularity of f-quasimetrics
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.355-361. DOI: 10.17377/semi.2018.15.032 WOS Scopus
Identifiers:
Web of science: | WOS:000438412200032 |
Scopus: | 2-s2.0-85046073946 |