Sobolev Embedding Theorems and Generalizations for Functions on a Metric Measure Space Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2018, Volume: 59, Number: 1, Pages: 126-135 Pages count : 10 DOI: 10.1134/S0037446618010147 | ||
Tags | embedding theorems; Gagliardo–Nirenberg inequalities; metric measure space; Sobolev classes | ||
Authors |
|
||
Affiliations |
|
Abstract:
Considering the metric case, we define an analog of the Sobolev space of functions with generalized derivatives of order greater than 1. The space of functions with fractional generalized derivatives is also treated. We prove generalizations of the Sobolev embedding theorems and Gagliardo–Nirenberg interpolation inequalities to the metric case. © 2018, Pleiades Publishing, Ltd.
Cite:
Romanovskiĭ N.N.
Sobolev Embedding Theorems and Generalizations for Functions on a Metric Measure Space
Siberian Mathematical Journal. 2018. V.59. N1. P.126-135. DOI: 10.1134/S0037446618010147 WOS Scopus OpenAlex
Sobolev Embedding Theorems and Generalizations for Functions on a Metric Measure Space
Siberian Mathematical Journal. 2018. V.59. N1. P.126-135. DOI: 10.1134/S0037446618010147 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000427144300014 |
Scopus: | 2-s2.0-85043498124 |
OpenAlex: | W2792877438 |