Sciact
  • EN
  • RU

Sobolev Embedding Theorems and Generalizations for Functions on a Metric Measure Space Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 1, Pages: 126-135 Pages count : 10 DOI: 10.1134/S0037446618010147
Tags embedding theorems; Gagliardo–Nirenberg inequalities; metric measure space; Sobolev classes
Authors Romanovskiĭ N.N. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: Considering the metric case, we define an analog of the Sobolev space of functions with generalized derivatives of order greater than 1. The space of functions with fractional generalized derivatives is also treated. We prove generalizations of the Sobolev embedding theorems and Gagliardo–Nirenberg interpolation inequalities to the metric case. © 2018, Pleiades Publishing, Ltd.
Cite: Romanovskiĭ N.N.
Sobolev Embedding Theorems and Generalizations for Functions on a Metric Measure Space
Siberian Mathematical Journal. 2018. V.59. N1. P.126-135. DOI: 10.1134/S0037446618010147 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000427144300014
Scopus: 2-s2.0-85043498124
OpenAlex: W2792877438
Citing:
DB Citing
Scopus 2
OpenAlex 1
Web of science 2
Altmetrics: