Sciact
  • EN
  • RU

Nonpresentability of Some Structures of Analysis in Hereditarily Finite Superstructures Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2018, Volume: 56, Number: 6, Pages: 458-472 Pages count : 15 DOI: 10.1007/s10469-018-9468-7
Tags countable consistent theory; existentially Steinitz structure; hereditarily finite superstructure; infinitedimensional separable Hilbert space; nonstandard analysis; semigroup of continuous functions; Σ-presentability
Authors Morozov A.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Abstract: It is proved that any countable consistent theory with infinite models has a Σ-presentable model of cardinality 2ω over. It is shown that some structures studied in analysis (in particular, a semigroup of continuous functions, certain structures of nonstandard analysis, and infinite-dimensional separable Hilbert spaces) have no simple Σ-presentations in hereditarily finite superstructures over existentially Steinitz structures. The results are proved by a unified method on the basis of a new general sufficient condition. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Morozov A.S.
Nonpresentability of Some Structures of Analysis in Hereditarily Finite Superstructures
Algebra and Logic. 2018. V.56. N6. P.458-472. DOI: 10.1007/s10469-018-9468-7 WOS Scopus OpenAlex
Original: Морозов А.С.
Непредставимость некоторых структур анализа в наследственно конечных надстройках
Алгебра и логика. 2017. Т.56. №6. С.691-711. DOI: 10.17377/alglog.2017.56.604 РИНЦ MathNet
Identifiers:
Web of science: WOS:000426390500004
Scopus: 2-s2.0-85042438199
OpenAlex: W2791425253
Citing:
DB Citing
Scopus 2
OpenAlex 4
Web of science 2
Altmetrics: