Nonpresentability of Some Structures of Analysis in Hereditarily Finite Superstructures Full article
Journal |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 56, Number: 6, Pages: 458-472 Pages count : 15 DOI: 10.1007/s10469-018-9468-7 | ||||
Tags | countable consistent theory; existentially Steinitz structure; hereditarily finite superstructure; infinitedimensional separable Hilbert space; nonstandard analysis; semigroup of continuous functions; Σ-presentability | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
It is proved that any countable consistent theory with infinite models has a Σ-presentable model of cardinality 2ω over. It is shown that some structures studied in analysis (in particular, a semigroup of continuous functions, certain structures of nonstandard analysis, and infinite-dimensional separable Hilbert spaces) have no simple Σ-presentations in hereditarily finite superstructures over existentially Steinitz structures. The results are proved by a unified method on the basis of a new general sufficient condition. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
Cite:
Morozov A.S.
Nonpresentability of Some Structures of Analysis in Hereditarily Finite Superstructures
Algebra and Logic. 2018. V.56. N6. P.458-472. DOI: 10.1007/s10469-018-9468-7 WOS Scopus OpenAlex
Nonpresentability of Some Structures of Analysis in Hereditarily Finite Superstructures
Algebra and Logic. 2018. V.56. N6. P.458-472. DOI: 10.1007/s10469-018-9468-7 WOS Scopus OpenAlex
Original:
Морозов А.С.
Непредставимость некоторых структур анализа в наследственно конечных надстройках
Алгебра и логика. 2017. Т.56. №6. С.691-711. DOI: 10.17377/alglog.2017.56.604 РИНЦ MathNet
Непредставимость некоторых структур анализа в наследственно конечных надстройках
Алгебра и логика. 2017. Т.56. №6. С.691-711. DOI: 10.17377/alglog.2017.56.604 РИНЦ MathNet
Identifiers:
Web of science: | WOS:000426390500004 |
Scopus: | 2-s2.0-85042438199 |
OpenAlex: | W2791425253 |