Sciact
  • EN
  • RU

Generalizations of Casey’s Theorem for Higher Dimensions Full article

Journal Lobachevskii Journal of Mathematics
ISSN: 1995-0802 , E-ISSN: 1818-9962
Output data Year: 2018, Volume: 39, Number: 1, Pages: 1-12 Pages count : 12 DOI: 10.1134/S199508021801002X
Tags Casey’s theorem; problem of Apollonius; Ptolemy’s theorem
Authors Abrosimov N.V. 1,2 , Aseev V.V. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Abstract: We give generalizations of Casey’s theorem and its converse for higher dimensions. We also present a multidimensional generalization for the problem of Apollonius. To do this we introduce a notion of ψ-tangent for a generalized k-sphere that touches a number of generalized n-balls in proper manner. © 2018, Pleiades Publishing, Ltd.
Cite: Abrosimov N.V. , Aseev V.V.
Generalizations of Casey’s Theorem for Higher Dimensions
Lobachevskii Journal of Mathematics. 2018. V.39. N1. P.1-12. DOI: 10.1134/S199508021801002X WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000424907400001
Scopus: 2-s2.0-85042129212
OpenAlex: W2792251774
Citing:
DB Citing
Scopus 5
OpenAlex 7
Web of science 4
Altmetrics: