Sciact
  • EN
  • RU

Quotient Structures and Groups Computable in Polynomial Time Full article

Conference 17th International Computer Science Symposium in Russia
29 Jun - 1 Jul 2022 , он-лайн
Journal Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Output data Year: 2022, Volume: 13296 LNCS, Pages: 35-45 Pages count : 11 DOI: 10.1007/978-3-031-09574-0_3
Tags computable structures; groups; polynomial computability; primitive recursive structures
Authors Alaev P. 1
Affiliations
1 Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russian Federation

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0011
2 Russian Foundation for Basic Research 20-01-00300

Abstract: We prove that every quotient structure of the form A/ E, where A is a structure computable in polynomial time (P -computable), and E is a P -computable congruence in A, is isomorphic to a P -computable structure. We also prove that for every P -computable group A= (A, · ), there is a P -computable group B≅ A, in which the inversion operation x- 1 is also P -computable. © 2022, Springer Nature Switzerland AG.
Cite: Alaev P.
Quotient Structures and Groups Computable in Polynomial Time
Lecture Notes in Computer Science. 2022. V.13296 LNCS. P.35-45. DOI: 10.1007/978-3-031-09574-0_3 Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85134166548
OpenAlex: W4285261414
Citing:
DB Citing
Scopus 2
OpenAlex 2
Altmetrics: