Geodesic and Translation Ball Packings Generated by Prismatic Tessellations of the Universal Cover of SL2(R) Full article
Journal |
Results in Mathematics
ISSN: 1422-6383 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2017, Volume: 71, Number: 3-4, Pages: 623-642 Pages count : 20 DOI: 10.1007/s00025-016-0542-y | ||||||
Tags | density of ball packing under space group; regular prism tiling; SL 2(R) ~ geometry; Thurston geometries; volume in SL 2(R) ~ space | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
We construct ball packings of the universal cover of SL 2(R) by geodesic balls and translation balls. The packings are generated by action of the prism groups pqkoℓ. We obtain volume formulae for calculations in geographical coordinates. Using these formulae we find numerically the maximal dense packings for cases k= 1 , o= 2 , ℓ= 1 and small values of p and q. © 2016, Springer International Publishing.
Cite:
Molnár E.
, Szirmai J.
, Vesnin A.
Geodesic and Translation Ball Packings Generated by Prismatic Tessellations of the Universal Cover of SL2(R)
Results in Mathematics. 2017. V.71. N3-4. P.623-642. DOI: 10.1007/s00025-016-0542-y WOS Scopus OpenAlex
Geodesic and Translation Ball Packings Generated by Prismatic Tessellations of the Universal Cover of SL2(R)
Results in Mathematics. 2017. V.71. N3-4. P.623-642. DOI: 10.1007/s00025-016-0542-y WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000401007300005 |
Scopus: | 2-s2.0-84961784510 |
OpenAlex: | W2303599370 |