Sciact
  • EN
  • RU

Geodesic and Translation Ball Packings Generated by Prismatic Tessellations of the Universal Cover of SL2(R) Full article

Journal Results in Mathematics
ISSN: 1422-6383
Output data Year: 2017, Volume: 71, Number: 3-4, Pages: 623-642 Pages count : 20 DOI: 10.1007/s00025-016-0542-y
Tags density of ball packing under space group; regular prism tiling; SL 2(R) ~ geometry; Thurston geometries; volume in SL 2(R) ~ space
Authors Molnár E. 1 , Szirmai J. 1 , Vesnin A. 2,3
Affiliations
1 Department of Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Budapest XI, Egry J. u. 1, H. II. 22, Budapest, 1521, Hungary
2 Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk, 454001, Russian Federation
3 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Abstract: We construct ball packings of the universal cover of SL 2(R) by geodesic balls and translation balls. The packings are generated by action of the prism groups pqkoℓ. We obtain volume formulae for calculations in geographical coordinates. Using these formulae we find numerically the maximal dense packings for cases k= 1 , o= 2 , ℓ= 1 and small values of p and q. © 2016, Springer International Publishing.
Cite: Molnár E. , Szirmai J. , Vesnin A.
Geodesic and Translation Ball Packings Generated by Prismatic Tessellations of the Universal Cover of SL2(R)
Results in Mathematics. 2017. V.71. N3-4. P.623-642. DOI: 10.1007/s00025-016-0542-y WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000401007300005
Scopus: 2-s2.0-84961784510
OpenAlex: W2303599370
Citing:
DB Citing
Scopus 7
OpenAlex 5
Web of science 5
Altmetrics: