Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations Full article
Journal |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||||
---|---|---|---|---|---|
Output data | Year: 2017, Volume: 221, Number: 6, Pages: 840-848 Pages count : 9 DOI: 10.1007/s10958-017-3272-0 | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations. © 2017, Springer Science+Business Media New York.
Cite:
Goncharov S.S.
, Bazhenov N.A.
, Marchuk M.I.
Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations
Journal of Mathematical Sciences (United States). 2017. V.221. N6. P.840-848. DOI: 10.1007/s10958-017-3272-0 Scopus OpenAlex
Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations
Journal of Mathematical Sciences (United States). 2017. V.221. N6. P.840-848. DOI: 10.1007/s10958-017-3272-0 Scopus OpenAlex
Identifiers:
Scopus: | 2-s2.0-85011635917 |
OpenAlex: | W2586908441 |