Sciact
  • EN
  • RU

On Algebras of Distributions of Binary Isolating Formulas for Theories of Abelian Groups and Their Ordered Enrichments Full article

Journal Russian Mathematics
ISSN: 1066-369X , E-ISSN: 1934-810X
Output data Year: 2018, Volume: 62, Number: 4, Pages: 1-12 Pages count : 12 DOI: 10.3103/S1066369X18040011
Tags algebra of distributions of binary isolating formulas, abelian group, elementary theory, ordered enrichment
Authors Baikalova K.A. 1 , Emel’yanov D.Yu. 2 , Kulpeshov B.Sh. 3,4 , Palyutin E.A. 2,4,5 , Sudoplatov S.V. 1,2,4,5
Affiliations
1 Novosibirsk State Technical University
2 Novosibirsk State University
3 International University of IT
4 Institute of Mathematics and Mathematical Modeling, Almaty
5 Sobolev Institute of Mathematics

Abstract: We describe algebras of distributions of binary isolating formulas for theories of abelian groups and some of their ordered enrichments. The base of this description is the general theory of algebras of isolating formulas. We also take into account the specificity of the basedness of theories of abelian groups on Szmielew invariants. We give Cayley tables for algebras that correspond to theories of basic abelian groups and their ordered enrichments and propose a technique for transforming algebras for theories of basic abelian groups into algebras for arbitrary theories of abelian groups.
Cite: Baikalova K.A. , Emel’yanov D.Y. , Kulpeshov B.S. , Palyutin E.A. , Sudoplatov S.V.
On Algebras of Distributions of Binary Isolating Formulas for Theories of Abelian Groups and Their Ordered Enrichments
Russian Mathematics. 2018. V.62. N4. P.1-12. DOI: 10.3103/S1066369X18040011 WOS Scopus РИНЦ OpenAlex
Original: Байкалова К.А. , Емельянов Д.Ю. , Кулпешов Б.Ш. , Палютин Е.А. , Судоплатов С.В.
Об алгебрах распределений бинарных изолирующих формул теорий абелевых групп и их упорядоченных обогащений
Известия высших учебных заведений. Серия: Математика. 2018. №4. С.3-15. РИНЦ
Dates:
Submitted: Jan 13, 2017
Published print: Apr 4, 2018
Published online: Apr 4, 2018
Identifiers:
Web of science: WOS:000429242100001
Scopus: 2-s2.0-85045111125
Elibrary: 35504309
OpenAlex: W2799447649
Citing:
DB Citing
Web of science 9
Scopus 8
Elibrary 12
OpenAlex 10
Altmetrics: