Structure of Quasivariety Lattices. III. Finitely Partitionable Bases Full article
Journal |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 59, Number: 3, Pages: 222-229 Pages count : 8 DOI: 10.1007/s10469-020-09594-9 | ||||||||||
Tags | finitely partitionable basis; independent basis; quasi-identity; quasivariety | ||||||||||
Authors |
|
||||||||||
Affiliations |
|
Abstract:
We prove that each quasivariety containing a B-class has continuum many subquasivarieties with finitely partitionable ω-independent quasi-equational basis. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Cite:
Kravchenko A.V.
, Nurakunov A.M.
, Schwidefsky M.V.
Structure of Quasivariety Lattices. III. Finitely Partitionable Bases
Algebra and Logic. 2020. V.59. N3. P.222-229. DOI: 10.1007/s10469-020-09594-9 WOS Scopus OpenAlex
Structure of Quasivariety Lattices. III. Finitely Partitionable Bases
Algebra and Logic. 2020. V.59. N3. P.222-229. DOI: 10.1007/s10469-020-09594-9 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000585009100007 |
Scopus: | 2-s2.0-85094651068 |
OpenAlex: | W3097856083 |