Sciact
  • EN
  • RU

Structure of Quasivariety Lattices. III. Finitely Partitionable Bases Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2020, Volume: 59, Number: 3, Pages: 222-229 Pages count : 8 DOI: 10.1007/s10469-020-09594-9
Tags finitely partitionable basis; independent basis; quasi-identity; quasivariety
Authors Kravchenko A.V. 1,2,3,4 , Nurakunov A.M. 5 , Schwidefsky M.V. 1,2,3
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University
3 Novosibirsk State Technical University
4 Siberian Institute of Management
5 Institute of Mathematics, National Academy of Science of the Kyrgyz Republic, Bishkek, Kyrgyzstan

Abstract: We prove that each quasivariety containing a B-class has continuum many subquasivarieties with finitely partitionable ω-independent quasi-equational basis. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Kravchenko A.V. , Nurakunov A.M. , Schwidefsky M.V.
Structure of Quasivariety Lattices. III. Finitely Partitionable Bases
Algebra and Logic. 2020. V.59. N3. P.222-229. DOI: 10.1007/s10469-020-09594-9 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000585009100007
Scopus: 2-s2.0-85094651068
OpenAlex: W3097856083
Citing:
DB Citing
Scopus 9
OpenAlex 6
Web of science 9
Altmetrics: