Sciact
  • EN
  • RU

The discrete Wiener-Hopf equation with submultiplicative asymptotics of the solution Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2019, Volume: 16, Pages: 1600-1611 Pages count : 12 DOI: 10.33048/SEMI.2019.16.111
Tags Arithmetic probability distribution; Asymptotic behavior; Discrete wiener-hopf equation; Nonhomogeneous equation; Positive mean; Regularly varying function; Submultiplicative sequence
Authors Sgibnev M.S. 1
Affiliations
1 Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russian Federation

Abstract: The discrete Wiener-Hopf equation is considered whose kernel is an arithmetic probability distribution with positive mean. The nonhomogeneous term behaves like a nondecreasing submultiplicative sequence. Asymptotic properties of the solution are established depending on the asymptotics of the submultiplicative sequence. © 2019.
Cite: Sgibnev M.S.
The discrete Wiener-Hopf equation with submultiplicative asymptotics of the solution
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.1600-1611. DOI: 10.33048/SEMI.2019.16.111 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000494732000001
Scopus: 2-s2.0-85083482995
OpenAlex: W3015932974
Citing: Пока нет цитирований
Altmetrics: