Sciact
  • EN
  • RU

On Potential Counterexamples to the Problem of Zero Divisors Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2017, Volume: 221, Number: 6, Pages: 778-797 Pages count : 20 DOI: 10.1007/s10958-017-3266-y
Authors Bardakov V.G. 1,2 , Petukhova M.S. 2
Affiliations
1 Sobolev Institute of Mathematics SB RAS, 4, pr. Akad. Koptyuga, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation

Abstract: E. Rips constructed a series of groups such that their group rings have zero divisors. such groups can serve as counterexamples to Kaplansky’s problem on zero divisors. The problem is to find such a group without torsion. We study simplest groups of this series, classify such groups, describe the structure, and show that all such groups have 2-torsion. © 2017, Springer Science+Business Media New York.
Cite: Bardakov V.G. , Petukhova M.S.
On Potential Counterexamples to the Problem of Zero Divisors
Journal of Mathematical Sciences (United States). 2017. V.221. N6. P.778-797. DOI: 10.1007/s10958-017-3266-y Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85011654077
OpenAlex: W2586496384
Citing:
DB Citing
Scopus 2
OpenAlex 4
Altmetrics: