Sciact
  • EN
  • RU

Properties of Minimal Surfaces over Depth 2 Carnot Manifolds Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2021, Volume: 62, Number: 6, Pages: 1050-1062 Pages count : 13 DOI: 10.1134/S0037446621060070
Tags 517.518.1:517.2; area functional; Carnot manifold; Carnot–Carathéodory space; graph mapping; horizontal homomorphism; intrinsic measure; minimal surface; nilpotent graded group; sub-Riemannian mean curvature
Authors Karmanova M.B. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: We derive necessary and sufficient conditionsfor the minimality of the graph surfacesfor the classes of contact mappingsof depth 2 Carnot manifoldsinto Carnot–Carathéodory spaces of the same depth.The basic case of the problemis for the mappingswhose range is a nilpotent graded group.We describe some necessary and sufficient conditionsfor the well-posedness of this problemwhich are specificprecisely to nonholonomic spaces without group structurethat include requirements on the domain of definition. © 2021, Pleiades Publishing, Ltd.
Cite: Karmanova M.B.
Properties of Minimal Surfaces over Depth 2 Carnot Manifolds
Siberian Mathematical Journal. 2021. V.62. N6. P.1050-1062. DOI: 10.1134/S0037446621060070 WOS Scopus OpenAlex
Original: Карманова М.Б.
Свойства минимальных поверхностей над многообразиями Карно глубины два
Сибирский математический журнал. 2021. Т.62. №6. С.1298-1312. DOI: 10.33048/smzh.2021.62.607 OpenAlex
Identifiers:
Web of science: WOS:000723707400007
Scopus: 2-s2.0-85120161674
OpenAlex: W3216853028
Citing:
DB Citing
Scopus 1
OpenAlex 1
Altmetrics: