On the complexity of the lattices of subvarieties and congruences Full article
Journal |
International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 30, Number: 8, Pages: 1609-1624 Pages count : 16 DOI: 10.1142/S0218196720500563 | ||||||||||
Tags | Computable set; congruence; lattice; undecidable problem; variety | ||||||||||
Authors |
|
||||||||||
Affiliations |
|
Abstract:
We find sufficient conditions guaranteeing that for a quasivariety M of structures of finite type containing a B-class with respect to M, there exists a subquasivariety K⊂M and a structure AϵK such that the problems whether a finite lattice embeds into the lattice Lv(K) of K-varieties and into the lattice ConK are undecidable. © 2020 World Scientific Publishing Company.
Cite:
Kravchenko A.V.
, Nurakunov A.M.
, Schwidefsky M.V.
On the complexity of the lattices of subvarieties and congruences
International Journal of Algebra and Computation. 2020. V.30. N8. P.1609-1624. DOI: 10.1142/S0218196720500563 WOS Scopus OpenAlex
On the complexity of the lattices of subvarieties and congruences
International Journal of Algebra and Computation. 2020. V.30. N8. P.1609-1624. DOI: 10.1142/S0218196720500563 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000599887200005 |
Scopus: | 2-s2.0-85091754248 |
OpenAlex: | W3043919832 |