Sciact
  • EN
  • RU

On some diagram assertions in preabelian and P-semi-abelian categories Full article

Journal Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
ISSN: 1816-9791 , E-ISSN: 2541-9005
Output data Year: 2020, Volume: 20, Number: 4, Pages: 434-443 Pages count : 10 DOI: 10.18500/1816-9791-2020-20-4-434-443
Tags Coker-sequence; Ker-sequence; P-semi-abelian category; Semi-stable kernels and cokernels; Snake Lemma; Strict morphism
Authors Kopylov Ya.A. 1
Affiliations
1 Sobolev Institute of Mathematics, 4 Ac. Koptyuga Ave., Novosibirsk, 630090, Russian Federation

Abstract: As is well known, many important additive categories in functional analysis and algebra are not abelian. Many classical diagram assertions valid in abelian categories fail in more general additive categories without additional assumptions concerning the properties of the morphisms of the diagrams under consideration. This in particular applies to the so-called Snake Lemma, or the Ker- Coker-sequence. We obtain a theorem about a diagram generalizing the classical situation of the Snake Lemma in the context of categories semi-abelian in the sense of Palamodov. It is also known that, already in P-semi-abelian categories, not all kernels (respectively, cokernels) are semi-stable, that is, stable under pushouts (respectively, pullbacks). We prove a proposition showing how non-semi-stable kernels and cokernels can arise in general preabelian categories.
Cite: Kopylov Y.A.
On some diagram assertions in preabelian and P-semi-abelian categories
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика. 2020. V.20. N4. P.434-443. DOI: 10.18500/1816-9791-2020-20-4-434-443 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000605260300003
Scopus: 2-s2.0-85098253390
OpenAlex: W3108437685
Citing:
DB Citing
OpenAlex 1
Altmetrics: