A partition of the hypercube into maximally nonparallel Hamming codes Full article
Journal |
Journal of Combinatorial Designs
ISSN: 1063-8539 |
||||
---|---|---|---|---|---|
Output data | Year: 2014, Volume: 22, Number: 4, Pages: 179-187 Pages count : 9 DOI: 10.1002/jcd.21363 | ||||
Tags | perfect code; 1-perfect partition; Gold function; crooked permutation | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
By using the Gold map, we construct a partition of the hypercube into cosets of Hamming codes such that for every two cosets the corresponding Hamming codes are maximally nonparallel, that is, their intersection cardinality is as small as possible to admit nonintersecting cosets.
Cite:
Krotov D.S.
A partition of the hypercube into maximally nonparallel Hamming codes
Journal of Combinatorial Designs. 2014. V.22. N4. P.179-187. DOI: 10.1002/jcd.21363 WOS Scopus РИНЦ OpenAlex
A partition of the hypercube into maximally nonparallel Hamming codes
Journal of Combinatorial Designs. 2014. V.22. N4. P.179-187. DOI: 10.1002/jcd.21363 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Oct 18, 2012 |
Published online: | Jul 8, 2013 |
Identifiers:
Web of science: | WOS:000329603500004 |
Scopus: | 2-s2.0-84892676547 |
Elibrary: | 21863266 |
OpenAlex: | W1484583065 |