Sciact
  • EN
  • RU

A comparative analysis of numerical methods of solving the continuation problem for 1D parabolic equation with the data given on the part of the boundary Full article

Journal Advances in Computational Mathematics
ISSN: 1019-7168 , E-ISSN: 1572-9044
Output data Year: 2019, Volume: 45, Number: 2, Pages: 735-755 Pages count : 21 DOI: 10.1007/s10444-018-9631-7
Tags Continuation problem; Finite-difference scheme inversion; Gradient method; Numerical methods; Parabolic equation; Singular value decomposition
Authors Belonosov A. 1,2 , Shishlenin M. 1,2,3 , Klyuchinskiy D. 1,2
Affiliations
1 Institute of Computational Mathematics and Mathematical Geophysics
2 Novosibirsk State University
3 Sobolev Institute of Mathematics

Abstract: The ill-posed continuation problem for the one-dimensional parabolic equation with the data given on the part of the boundary is investigated. We prove the uniqueness theorem about the solution of the continuation problem. The finite-difference scheme inversion, the singular value decomposition, and gradient type method are numerically compared. The influence of a noisy data on the solution is presented. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Belonosov A. , Shishlenin M. , Klyuchinskiy D.
A comparative analysis of numerical methods of solving the continuation problem for 1D parabolic equation with the data given on the part of the boundary
Advances in Computational Mathematics. 2019. V.45. N2. P.735-755. DOI: 10.1007/s10444-018-9631-7 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000463858000010
Scopus: 2-s2.0-85053937998
OpenAlex: W2893137895
Citing:
DB Citing
Scopus 12
OpenAlex 12
Web of science 9
Altmetrics: