Sciact
  • EN
  • RU

Standard Bases for the Universal Associative Conformal Envelopes of Kac–Moody Conformal Algebras Full article

Journal Algebras and Representation Theory
ISSN: 1386-923X , E-ISSN: 1572-9079
Output data Year: 2022, Volume: 25, Number: 4, Pages: 847-867 Pages count : 21 DOI: 10.1007/s10468-021-10050-0
Tags Conformal algebra; Gröbner–Shirshov basis
Authors Kolesnikov P.S. 1 , Kozlov R.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Novosibirsk State University, Novosibirsk, Russian Federation

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We study the universal enveloping associative conformal algebra for the central extension of a current Lie conformal algebra at the locality level N = 3. A standard basis of defining relations for this algebra is explicitly calculated. As a corollary, we find a linear basis of the free commutative conformal algebra relative to the locality N = 3 on the generators. © 2021, The Author(s), under exclusive licence to Springer Nature B.V.
Cite: Kolesnikov P.S. , Kozlov R.A.
Standard Bases for the Universal Associative Conformal Envelopes of Kac–Moody Conformal Algebras
Algebras and Representation Theory. 2022. V.25. N4. P.847-867. DOI: 10.1007/s10468-021-10050-0 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000650310600001
Scopus: 2-s2.0-85105956652
Elibrary: 46076386
OpenAlex: W3162407403
Citing:
DB Citing
Scopus 3
Web of science 3
OpenAlex 4
Elibrary 2
Altmetrics: