Sciact
  • EN
  • RU

Neural Networks and Classical Algorithms in Inverse Problems of Anomalous Diffusion Full article

Conference Science and Artificial Intelligence Conference, S.A.I.ence
14-15 Nov 2020 , Новосибирск
Source Proceedings - 2020 Science and Artificial Intelligence Conference, S.A.I.ence 2020
Compilation, IEEE. 2020. 68 c.
Output data Year: 2020, Article number : 9303217, Pages count : 4 DOI: 10.1109/S.A.I.ence50533.2020.9303217
Tags anomalous diffusion; artificial neural networks; inverse problems; numerical methods
Authors Dedok V.A. 1,2 , Bugueva T.V. 1,3
Affiliations
1 Sobolev Institute of Mathematics
2 Mathematical Center in Akademgorodok
3 Novosibirsk State University

Abstract: The paper develops a new numerical method for the solution of the inverse problems. This method can be classified as a predictor-corrector method, in which the artificial neural network plays the role of a predictor, and the gradient method plays the role of a corrector. We apply this method to inverse anomalous diffusion problem and show its statistical efficiency. © 2020 IEEE.
Cite: Dedok V.A. , Bugueva T.V.
Neural Networks and Classical Algorithms in Inverse Problems of Anomalous Diffusion
In compilation Proceedings - 2020 Science and Artificial Intelligence Conference, S.A.I.ence 2020. – IEEE., 2020. – C.9-12. DOI: 10.1109/S.A.I.ence50533.2020.9303217 Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85099601360
OpenAlex: W3114258388
Citing:
DB Citing
Scopus 1
OpenAlex 1
Altmetrics: