Sciact
  • EN
  • RU

Bounds for the size of a minimal 1-perfect bitrade in a Hamming graph Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2015, Volume: 9, Number: 1, Pages: 141-146 Pages count : 6 DOI: 10.1134/s1990478915010159
Tags Hamming graph, Krawtchouk polynomial, 1-perfect bitrade
Authors Vorob'ev K.V. 1,2 , Krotov D.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
2 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: We improve the available upper and lower bounds for the minimal size of the support of an eigenfunction of the Hamming graph $H(n,q)$, where $q>2$. In particular, the size of a minimal 1-perfect bitrade in $H(n,q)$ is estimated. We show that the size of such a bitrade is at least $2^{n-(n-1)/q}(q-2)^{(n-1)/q}$ for $q≥4$ and $3^{n/2}(1-O(1/n))$ for $q=3$. Moreover, for $n≡1$ mod $q$, where $q$ is a prime power, we propose a construction of bitrades of size $q^{(q−2)(n−1)/q}2^{(n-1)/q+1}$.
Cite: Vorob'ev K.V. , Krotov D.S.
Bounds for the size of a minimal 1-perfect bitrade in a Hamming graph
Journal of Applied and Industrial Mathematics. 2015. V.9. N1. P.141-146. DOI: 10.1134/s1990478915010159 Scopus РИНЦ OpenAlex
Original: Воробьёв К.В. , Кротов Д.С.
Оценки мощности минимального 1-совершенного битрейда в графе Хэмминга
Дискретный анализ и исследование операций. 2014. Т.21. №6. С.3-10. РИНЦ
Dates:
Submitted: Oct 23, 2014
Accepted: Nov 10, 2014
Published online: Feb 28, 2015
Identifiers:
Scopus: 2-s2.0-84923844499
Elibrary: 24010875
OpenAlex: W2077459447
Citing:
DB Citing
Scopus 11
Elibrary 12
OpenAlex 15
Altmetrics: