Sciact
  • EN
  • RU

THE SOBOLEV–POINCARE INEQUALITY AND THE Lq,p - COHOMOLOGY OF TWISTED CYLINDERS Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2020, Volume: 17, Pages: 566-584 Pages count : 19 DOI: 10.33048/semi.2020.17.036
Tags differential form; homotopy operator; Lq,p-cohomology; Sobolev-Poincare inequality; twisted cylinder
Authors Gol'dshtein V. 1 , Kopylov Y.A. 2
Affiliations
1 Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva, P.O.box653, Israel
2 Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Abstract: We establish a vanishing result for the Lq,p-cohomology (q > p) of a twisted cylinder, which is a generalization of a warped cylinder. The result is new even for warped cylinders. We base on the methods for proving the (p, q)-Sobolev-Poincare inequality developed by L. Shartser.
Cite: Gol'dshtein V. , Kopylov Y.A.
THE SOBOLEV–POINCARE INEQUALITY AND THE Lq,p - COHOMOLOGY OF TWISTED CYLINDERS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2020. V.17. P.566-584. DOI: 10.33048/semi.2020.17.036 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000529940800001
Scopus: 2-s2.0-85097225351
OpenAlex: W3018716679
Citing: Пока нет цитирований
Altmetrics: