Sciact
  • EN
  • RU

Finite Homomorphic Images of Groups of Finite Rank Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2019, Volume: 60, Number: 3, Pages: 373-376 Pages count : 4 DOI: 10.1134/S0037446619030017
Tags group of finite rank; homomorphic image of a group; profinite group; residual finiteness; soluble group
Authors Azarov D.N. 1 , Romanovskii N.S. 2,3
Affiliations
1 Ivanovo State University, Ivanovo, Russian Federation
2 Sobolev Institute of Mathematics, Novosibirsk
3 Novosibirsk State University

Abstract: Let π be a finite set of primes. We prove that each soluble group of finite rank contains a finite index subgroup whose every finite homomorphic π-image is nilpotent. A similar assertion is proved for a finitely generated group of finite rank. These statements are obtained as a consequence of the following result of the article: Each soluble pro-π-group of finite rank has an open normal pronilpotent subgroup. © 2019, Pleiades Publishing, Inc.
Cite: Azarov D.N. , Romanovskii N.S.
Finite Homomorphic Images of Groups of Finite Rank
Siberian Mathematical Journal. 2019. V.60. N3. P.373-376. DOI: 10.1134/S0037446619030017 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000471617300001
Scopus: 2-s2.0-85067294069
OpenAlex: W2952716200
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 2
Altmetrics: