Stability estimates in tensor tomography Full article
Journal |
Inverse Problems and Imaging
ISSN: 1930-8337 , E-ISSN: 1930-8345 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2018, Volume: 12, Number: 5, Pages: 1245-1262 Pages count : 18 DOI: 10.3934/ipi.2018052 | ||||||
Tags | Tensor tomography; The Dirichlet principle; The Korn inequality; X-ray transform | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
We study the X-ray transform I of symmetric tensor fields on a smooth convex bounded domain Ω ⊂ ℝn. The main result is the stability estimate (Formula Presented), where sf is the solenoidal part of the tensor field f. The proof is based on a comparison of the Dirichlet integrals for the exterior and interior Dirichlet problems and on a generalization of the Korn inequality to symmetric tensor fields of arbitrary rank. © 2018 American Institute of Mathematical Sciences.
Cite:
Boman J.
, Sharafutdinov V.
Stability estimates in tensor tomography
Inverse Problems and Imaging. 2018. V.12. N5. P.1245-1262. DOI: 10.3934/ipi.2018052 WOS Scopus OpenAlex
Stability estimates in tensor tomography
Inverse Problems and Imaging. 2018. V.12. N5. P.1245-1262. DOI: 10.3934/ipi.2018052 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000446988400009 |
Scopus: | 2-s2.0-85052247364 |
OpenAlex: | W2887530441 |