Momentum ray transforms, II: Range characterization in the Schwartz space Full article
Journal |
Inverse Problems
ISSN: 0266-5611 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 36, Number: 4, Article number : 045009, Pages count : DOI: 10.1088/1361-6420/ab6a65 | ||||||
Tags | inverse problems; John's conditions; momentum ray transform; range characterization; ray transform; tensor analysis | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
The momentum ray transform I k integrates a rank m symmetric tensor field f over lines of with the weight t k: We give the range characterization for the operator on the Schwartz space of rank m smooth fast decaying tensor fields. In dimensions, the range is characterized by certain differential equations of order which generalize the classical John equations. In the two-dimensional case, the range is characterized by certain integral conditions which generalize the classical Gelfand-Helgason-Ludwig conditions.
Cite:
Krishnan V.P.
, Manna R.
, Sahoo S.K.
, Sharafutdinov V.A.
Momentum ray transforms, II: Range characterization in the Schwartz space
Inverse Problems. 2020. V.36. N4. 045009 . DOI: 10.1088/1361-6420/ab6a65 WOS Scopus OpenAlex
Momentum ray transforms, II: Range characterization in the Schwartz space
Inverse Problems. 2020. V.36. N4. 045009 . DOI: 10.1088/1361-6420/ab6a65 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000518972500001 |
Scopus: | 2-s2.0-85081964028 |
OpenAlex: | W2973765856 |