Sciact
  • EN
  • RU

Momentum ray transforms, II: Range characterization in the Schwartz space Full article

Journal Inverse Problems
ISSN: 0266-5611
Output data Year: 2020, Volume: 36, Number: 4, Article number : 045009, Pages count : DOI: 10.1088/1361-6420/ab6a65
Tags inverse problems; John's conditions; momentum ray transform; range characterization; ray transform; tensor analysis
Authors Krishnan V.P. 1 , Manna R. 1 , Sahoo S.K. 1 , Sharafutdinov V.A. 2,3
Affiliations
1 TIFR Centre for Applicable Mathematics, Sharada Nagar, Chikkabommasandra, Yelahanka New Town Bangalore, India
2 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
3 Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russian Federation

Abstract: The momentum ray transform I k integrates a rank m symmetric tensor field f  over lines of with the weight t k: We give the range characterization for the operator on the Schwartz space of rank m smooth fast decaying tensor fields. In dimensions, the range is characterized by certain differential equations of order which generalize the classical John equations. In the two-dimensional case, the range is characterized by certain integral conditions which generalize the classical Gelfand-Helgason-Ludwig conditions.
Cite: Krishnan V.P. , Manna R. , Sahoo S.K. , Sharafutdinov V.A.
Momentum ray transforms, II: Range characterization in the Schwartz space
Inverse Problems. 2020. V.36. N4. 045009 . DOI: 10.1088/1361-6420/ab6a65 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000518972500001
Scopus: 2-s2.0-85081964028
OpenAlex: W2973765856
Citing:
DB Citing
Scopus 20
OpenAlex 7
Web of science 20
Altmetrics: