Sciact
  • EN
  • RU

On the asymptotic optimality of orthoregressional estimators Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2016, Volume: 10, Number: 4, Pages: 511-519 Pages count : 9 DOI: 10.1134/S1990478916040074
Tags asymptotic efficiency; linear autonomous difference equation; orthoregressional estimator; parameter identification; STLS estimator
Authors Lomov A.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Abstract: It is shown that the orthoregressional (STLS) parameter estimators in linear algebraic systems (including autonomous difference equations with matrix coefficients) converge to the maximum likelihood estimators and thus become asymptotically best in the limit case of large variances of the random coordinates on the variety of solutions to the system observed with additive random perturbations. © 2016, Pleiades Publishing, Ltd.
Cite: Lomov A.A.
On the asymptotic optimality of orthoregressional estimators
Journal of Applied and Industrial Mathematics. 2016. V.10. N4. P.511-519. DOI: 10.1134/S1990478916040074 Scopus OpenAlex
Original: Ломов А.А.
Об асимптотической оптимальности орторегрессионных оценок
Сибирский журнал индустриальной математики. 2016. Т.19. №4(68). С.51-60. DOI: 10.17377/sibjim.2016.19.406
Identifiers:
Scopus: 2-s2.0-84996587684
OpenAlex: W2549429725
Citing:
DB Citing
Scopus 3
OpenAlex 2
Altmetrics: