On the asymptotic optimality of orthoregressional estimators Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||||
---|---|---|---|---|---|
Output data | Year: 2016, Volume: 10, Number: 4, Pages: 511-519 Pages count : 9 DOI: 10.1134/S1990478916040074 | ||||
Tags | asymptotic efficiency; linear autonomous difference equation; orthoregressional estimator; parameter identification; STLS estimator | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
It is shown that the orthoregressional (STLS) parameter estimators in linear algebraic systems (including autonomous difference equations with matrix coefficients) converge to the maximum likelihood estimators and thus become asymptotically best in the limit case of large variances of the random coordinates on the variety of solutions to the system observed with additive random perturbations. © 2016, Pleiades Publishing, Ltd.
Cite:
Lomov A.A.
On the asymptotic optimality of orthoregressional estimators
Journal of Applied and Industrial Mathematics. 2016. V.10. N4. P.511-519. DOI: 10.1134/S1990478916040074 Scopus OpenAlex
On the asymptotic optimality of orthoregressional estimators
Journal of Applied and Industrial Mathematics. 2016. V.10. N4. P.511-519. DOI: 10.1134/S1990478916040074 Scopus OpenAlex
Original:
Ломов А.А.
Об асимптотической оптимальности орторегрессионных оценок
Сибирский журнал индустриальной математики. 2016. Т.19. №4(68). С.51-60. DOI: 10.17377/sibjim.2016.19.406
Об асимптотической оптимальности орторегрессионных оценок
Сибирский журнал индустриальной математики. 2016. Т.19. №4(68). С.51-60. DOI: 10.17377/sibjim.2016.19.406
Identifiers:
Scopus: | 2-s2.0-84996587684 |
OpenAlex: | W2549429725 |