Sciact
  • EN
  • RU

On connection between the switching separability of a graph and its subgraphs Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2011, Volume: 5, Number: 2, Pages: 240-246 Pages count : 7 DOI: 10.1134/s1990478911020116
Tags two-graph, reducibility, separability, graph switching, Seidel switching, graph connectivity, n-ary quasigroup
Authors Krotov D.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
2 Novosibirsk State University, ul. Pirogova 2, 630090 Novosibirsk, Russia

Abstract: A graph of order n≥4 is called switching separable if the modulo-2 sum with some complete bipartite graph on the same vertex set results in a graph consisting of two mutually independent subgraphs of orders at least two. We prove that if removal of one or two vertices of the graph always results in a switching-separable subgraph, then the graph itself is switching separable. On the other hand, for every odd order there exists a nonswitching-separable graph such that removal of any one vertex gives a switching-separable subgraph. We also show connections with similar facts for the separability of Boolean functions and n-ary quasigroups.
Cite: Krotov D.S.
On connection between the switching separability of a graph and its subgraphs
Journal of Applied and Industrial Mathematics. 2011. V.5. N2. P.240-246. DOI: 10.1134/s1990478911020116 Scopus РИНЦ OpenAlex
Original: Кротов Д.С.
О связи свитчинговой разделимости графа и его подграфов
Дискретный анализ и исследование операций. 2010. Т.17. №2. С.46-56. РИНЦ
Dates:
Submitted: Oct 1, 2009
Published online: May 31, 2011
Identifiers:
Scopus: 2-s2.0-79957929118
Elibrary: 16989459
OpenAlex: W3099408188
Citing:
DB Citing
Scopus 1
Elibrary 1
OpenAlex 2
Altmetrics: