Sciact
  • EN
  • RU

Gröbner–Shirshov Bases for Replicated Algebras Full article

Journal Algebra Colloquium
ISSN: 1005-3867
Output data Year: 2017, Volume: 24, Number: 04, Pages: 563-576 Pages count : 14 DOI: 10.1142/s1005386717000372
Tags di-algebra; Gröbner-Shirshov basis; tri-algebra
Authors Kolesnikov P.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: We establish a universal approach to solutions of the word problem in the varieties of di- and tri-algebras. This approach, for example, allows us to apply Gröbner–Shirshov bases method for Lie algebras to solve the ideal membership problem in free Leibniz algebras (Lie di-algebras). As another application, we prove an analogue of the Poincaré–Birkhoff–Witt Theorem for universal enveloping associative tri-algebra of a Lie tri-algebra (CTD!-algebra).
Cite: Kolesnikov P.S.
Gröbner–Shirshov Bases for Replicated Algebras
Algebra Colloquium. 2017. V.24. N04. P.563-576. DOI: 10.1142/s1005386717000372 WOS Scopus OpenAlex
Dates:
Submitted: Jan 2, 2017
Identifiers:
Web of science: WOS:000415364500003
Scopus: 2-s2.0-85034055887
OpenAlex: W2656423269
Citing:
DB Citing
Scopus 7
OpenAlex 7
Web of science 5
Altmetrics: