Sciact
  • EN
  • RU

Two-variable polynomial invariants of virtual knots arising from flat virtual knot invariants Full article

Journal Journal of Knot Theory and its Ramifications
ISSN: 0218-2165
Output data Year: 2018, Volume: 27, Number: 13, Article number : 1842015, Pages count : DOI: 10.1142/S0218216518420154
Tags affine index polynomial; cosmetic crossing change; Virtual knot
Authors Kaur K. 1 , Prabhakar M. 1 , Vesnin A. 2,3
Affiliations
1 Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, 140001, India
2 Tomsk State University, Tomsk, 634050, Russian Federation
3 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russian Federation

Abstract: We introduce two sequences of two-variable polynomials Ln K (t, ℓ)}∞ n=1 and n K (t, ℓ)}∞ n=1, expressed in terms of index value of a crossing and n-dwrithe value of a virtual knot K, where t and l are variables. Basing on the fact that n-dwrithe is a flat virtual knot invariant, we prove that LKn and FKn are virtual knot invariants containing Kauffman affine index polynomial as a particular case. Using LK n we give sufficient conditions when virtual knot does not admit cosmetic crossing change. © 2018 World Scientific Publishing Company.
Cite: Kaur K. , Prabhakar M. , Vesnin A.
Two-variable polynomial invariants of virtual knots arising from flat virtual knot invariants
Journal of Knot Theory and its Ramifications. 2018. V.27. N13. 1842015 . DOI: 10.1142/S0218216518420154 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000454309600010
Scopus: 2-s2.0-85057766451
OpenAlex: W2964348242
Citing:
DB Citing
Scopus 16
OpenAlex 21
Web of science 14
Altmetrics: