Sciact
  • EN
  • RU

Approximation Algorithm for a Quadratic Euclidean Problem of Searching a Subset with the Largest Cardinality Full article

Journal CEUR Workshop Proceedings
ISSN: 1613-0073
Output data Year: 2017, Volume: 1987, Pages: 19-23 Pages count : 5
Authors Ageev Alexander A. 1 , Kelmanov Alexander V. 1,2 , Khamidullin Serrgey A. 1 , Pyatkin Artem 1,2 , Shenmaier V. V. 1
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: We consider the problem of searching a subset in a finite set of points of Euclidean space. The problem is to find a cluster (subset) of the largest cardinality satisfying a given upper bound on the sum of squared distances between the cluster elements and their centroid. We prove that this problem is strongly NP-hard and present a polynomial-time 1/2-approximation algorithm.
Cite: Ageev A.A. , Kelmanov A.V. , Khamidullin S.A. , Pyatkin A. , Shenmaier V.V.
Approximation Algorithm for a Quadratic Euclidean Problem of Searching a Subset with the Largest Cardinality
CEUR Workshop Proceedings. 2017. V.1987. P.19-23. Scopus
Identifiers:
Scopus: 2-s2.0-85036605297
Citing: Пока нет цитирований