On the Morse–Sard property and level sets of Wn,1 Sobolev functions on ℝn Full article
Journal |
Journal fur die Reine und Angewandte Mathematik
ISSN: 0075-4102 , E-ISSN: 1435-5345 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2013, Volume: 2015, Number: 700, Pages: 93-112 Pages count : 20 DOI: 10.1515/crelle-2013-0002 | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
Abstract. We establish Luzin N- and Morse-Sard properties for functions from the Sobolev space W^{n,1}(R^n) Using these results we prove that almost all level sets are finite disjoint unions of C1-smooth compact manifolds of dimension n-1. These results remain valid also within the larger space of functions of bounded variation BVn.Rn/. For the proofs we
establish and use some new results on Luzin-type approximation of Sobolev and BV-functions by Ck-functions, where the exceptional sets have small Hausdorff content.
Cite:
Bourgain J.
, Korobkov M.V.
, Kristensen J.
On the Morse–Sard property and level sets of Wn,1 Sobolev functions on ℝn
Journal fur die Reine und Angewandte Mathematik. 2013. V.2015. N700. P.93-112. DOI: 10.1515/crelle-2013-0002 WOS Scopus OpenAlex
On the Morse–Sard property and level sets of Wn,1 Sobolev functions on ℝn
Journal fur die Reine und Angewandte Mathematik. 2013. V.2015. N700. P.93-112. DOI: 10.1515/crelle-2013-0002 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000350640900003 |
Scopus: | 2-s2.0-84925680110 |
OpenAlex: | W2334279071 |