Sciact
  • EN
  • RU

On the Morse–Sard property and level sets of Wn,1 Sobolev functions on ℝn Full article

Journal Journal fur die Reine und Angewandte Mathematik
ISSN: 0075-4102 , E-ISSN: 1435-5345
Output data Year: 2013, Volume: 2015, Number: 700, Pages: 93-112 Pages count : 20 DOI: 10.1515/crelle-2013-0002
Authors Bourgain Jean 1 , Korobkov Mikhail V. 2 , Kristensen Jan 3
Affiliations
1 School of Mathematics, Institute for Advanced Study, Einstein Drive
2 Sobolev Institute of Mathematics
3 Mathematical Institute, University of Oxford

Abstract: Abstract. We establish Luzin N- and Morse-Sard properties for functions from the Sobolev space W^{n,1}(R^n) Using these results we prove that almost all level sets are finite disjoint unions of C1-smooth compact manifolds of dimension n-1. These results remain valid also within the larger space of functions of bounded variation BVn.Rn/. For the proofs we establish and use some new results on Luzin-type approximation of Sobolev and BV-functions by Ck-functions, where the exceptional sets have small Hausdorff content.
Cite: Bourgain J. , Korobkov M.V. , Kristensen J.
On the Morse–Sard property and level sets of Wn,1 Sobolev functions on ℝn
Journal fur die Reine und Angewandte Mathematik. 2013. V.2015. N700. P.93-112. DOI: 10.1515/crelle-2013-0002 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000350640900003
Scopus: 2-s2.0-84925680110
OpenAlex: W2334279071
Citing:
DB Citing
Scopus 22
OpenAlex 32
Web of science 20
Altmetrics: