Sciact
  • EN
  • RU

Computational Complexity of Two Problems of Cognitive Data Analysis Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2022, Volume: 16, Number: 1, Pages: 89-97 Pages count : 9 DOI: 10.1134/s1990478922010082
Tags NP-hardness, taxonomy (clustering), typical object (prototypes) selection, function of rival similarity
Authors Kutnenko O.A. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0015

Abstract: The NP-hardness in the strong sense is proved for two problems of cognitive data analysis. One of them is the problem of taxonomy (clustering), i.e., splitting an unclassified sample of objects into disjoint subsets. The other is the problem of sampling a subset of typical representatives of a classified sample that consists of objects of two images. The first problem can be considered as a special case of the second problem, provided that one of the images consists of one object. The function of rival similarity (FRiS-function) is used, which assesses the similarity of an object with the closest typical object, to obtain a quantitative quality estimate for the set of selected typical representatives of the sample.
Cite: Kutnenko O.A.
Computational Complexity of Two Problems of Cognitive Data Analysis
Journal of Applied and Industrial Mathematics. 2022. V.16. N1. P.89-97. DOI: 10.1134/s1990478922010082 Scopus РИНЦ OpenAlex
Original: Кутненко О.А.
Вычислительная сложность двух задач когнитивного анализа данных
Дискретный анализ и исследование операций. 2022. Т.29. №1. С.18-32. DOI: 10.33048/daio.2022.29.713 РИНЦ OpenAlex
Dates:
Submitted: Apr 26, 2021
Accepted: Dec 3, 2021
Published print: Jul 10, 2022
Identifiers:
Scopus: 2-s2.0-85134068370
Elibrary: 51450384
OpenAlex: W4285410638
Citing: Пока нет цитирований
Altmetrics: