Sciact
  • EN
  • RU

Completely Reducible Factors of Harmonic Polynomials of Three Variables Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2022, Volume: 32, Number: 2, Pages: 94-101 Pages count : 8 DOI: 10.1134/S1055134422020031
Tags harmonic divisors; spherical harmonics
Authors Gichev V.M. 1
Affiliations
1 Sobolev Institute of Mathematics, Omsk Branch, Omsk, 644029, Russian Federation

Abstract: Abstract: We describe the divisors of complex valued homogeneous harmonic polynomials which areproducts of linear forms on R3, andcharacterize homogeneous polynomials p that admit a coupleof linear forms l1 and l2 such that l1p and l2p are harmonic for some m ∈ N. The latter gives an example of a pair of sphericalharmonics whose set of common zeros has a length compatible with the sharp upper bound of thisquantity for a single harmonic.
Cite: Gichev V.M.
Completely Reducible Factors of Harmonic Polynomials of Three Variables
Siberian Advances in Mathematics. 2022. V.32. N2. P.94-101. DOI: 10.1134/S1055134422020031 Scopus РИНЦ OpenAlex
Original: Gichev V.M.
Вполне приводимые делители гармонических многочленов трех переменных
Математические труды. 2021. V.24. N2. P.24-36. DOI: 10.33048/mattrudy.2021.24.202 OpenAlex
Dates:
Submitted: Apr 4, 2020
Accepted: Jul 7, 2020
Published online: Jun 18, 2022
Identifiers:
Scopus: 2-s2.0-85132115857
Elibrary: 48722218
OpenAlex: W4283077871
Citing: Пока нет цитирований
Altmetrics: