Completely Reducible Factors of Harmonic Polynomials of Three Variables Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
---|---|---|---|
Output data | Year: 2022, Volume: 32, Number: 2, Pages: 94-101 Pages count : 8 DOI: 10.1134/S1055134422020031 | ||
Tags | harmonic divisors; spherical harmonics | ||
Authors |
|
||
Affiliations |
|
Abstract:
Abstract: We describe the divisors of complex valued homogeneous harmonic polynomials which areproducts of linear forms on R3, andcharacterize homogeneous polynomials p that admit a coupleof linear forms l1 and l2 such that l1p and l2p are harmonic for some m ∈ N. The latter gives an example of a pair of sphericalharmonics whose set of common zeros has a length compatible with the sharp upper bound of thisquantity for a single harmonic.
Cite:
Gichev V.M.
Completely Reducible Factors of Harmonic Polynomials of Three Variables
Siberian Advances in Mathematics. 2022. V.32. N2. P.94-101. DOI: 10.1134/S1055134422020031 Scopus РИНЦ OpenAlex
Completely Reducible Factors of Harmonic Polynomials of Three Variables
Siberian Advances in Mathematics. 2022. V.32. N2. P.94-101. DOI: 10.1134/S1055134422020031 Scopus РИНЦ OpenAlex
Original:
Gichev V.M.
Вполне приводимые делители гармонических многочленов трех переменных
Математические труды. 2021. V.24. N2. P.24-36. DOI: 10.33048/mattrudy.2021.24.202 OpenAlex
Вполне приводимые делители гармонических многочленов трех переменных
Математические труды. 2021. V.24. N2. P.24-36. DOI: 10.33048/mattrudy.2021.24.202 OpenAlex
Dates:
Submitted: | Apr 4, 2020 |
Accepted: | Jul 7, 2020 |
Published online: | Jun 18, 2022 |
Identifiers:
Scopus: | 2-s2.0-85132115857 |
Elibrary: | 48722218 |
OpenAlex: | W4283077871 |
Citing:
Пока нет цитирований