Sciact
  • EN
  • RU

ON THE COVERINGS OF HANTZSCHE-WENDT MANIFOLD Full article

Journal Tohoku Mathematical Journal
ISSN: 0040-8735
Output data Year: 2022, Volume: 74, Number: 2, Pages: 313-327 Pages count : 15 DOI: 10.2748/tmj.20210308
Tags crystallographic; Euclidean form; flat 3-manifold; non-equivalent coverings; platycosm
Authors Chelnokov G. 1 , Mednykh A. 2,3
Affiliations
1 NATIONAL RESEARCH UNIVERSITY, HIGHER SCHOOL OF ECONOMICS, MOSCOW, Russian Federation
2 SOBOLEV INSTITUTE OF MATHEMATICS, NOVOSIBIRSK, Russian Federation
3 NOVOSIBIRSK STATE UNIVERSITY, NOVOSIBIRSK, Russian Federation

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0007

Abstract: There are only 10 Euclidean forms, that is flat closed three dimensional manifolds: six are orientable G1, . . . , G6 and four are non-orientable B1, . . . , B4. In the present paper we investigate the manifold G6, also known as Hantzsche-Wendt manifold; this is the unique Euclidean 3-form with finite first homology group H1(G6) = Z24 . The aim of this paper is to describe all types of n-fold coverings over G6 and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental group π1(G6) up to isomorphism. Given index n, we calculate the numbers of subgroups and the numbers of conjugacy classes of subgroups for each isomorphism type and provide the Dirichlet generating series for the above sequences.
Cite: Chelnokov G. , Mednykh A.
ON THE COVERINGS OF HANTZSCHE-WENDT MANIFOLD
Tohoku Mathematical Journal. 2022. V.74. N2. P.313-327. DOI: 10.2748/tmj.20210308 WOS Scopus РИНЦ OpenAlex
Dates:
Published online: Jun 6, 2022
Identifiers:
Web of science: WOS:000828223600009
Scopus: 2-s2.0-85135184687
Elibrary: 55778579
OpenAlex: W3086594237
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 1
Altmetrics: