Sciact
  • EN
  • RU

Recognition of the MNIST dataset with defective rows Full article

Conference 15th International Scientific and Technical Conference: Applied Mechanics and Systems Dynamics
09-11 Nov 2021 , Омск
Journal Journal of Physics: Conference Series
ISSN: 1742-6588 , E-ISSN: 1742-6596
Output data Year: 2022, Volume: 2182, Number: 1, Article number : 012031, Pages count : DOI: 10.1088/1742-6596/2182/1/012031
Authors Shevlyakov A.N. 1 , Berezin A.A. 2
Affiliations
1 Sobolev Institute of Mathematics, 13 Pevtsova str, Omsk, 644099, Russian Federation
2 Omsk State University, 55 Mira str, Omsk, 644077, Russian Federation

Funding (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0003

Abstract: One of the well-known classification problems in machine learning is the problem of recognizing handwritten numbers. This task is solved, since there are different neural networks that determine with fairly high accuracy which number is shown in the picture. In this paper, we will consider the recognition of handwritten digits subjected to certain deformations. © Published under licence by IOP Publishing Ltd.
Cite: Shevlyakov A.N. , Berezin A.A.
Recognition of the MNIST dataset with defective rows
Journal of Physics: Conference Series. 2022. V.2182. N1. 012031 . DOI: 10.1088/1742-6596/2182/1/012031 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: 2-s2.0-85127645344
Elibrary: 48426190
OpenAlex: W4221011221
Citing:
DB Citing
OpenAlex 1
Elibrary 1
Altmetrics: