Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls Full article
Journal |
Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802 |
||
---|---|---|---|
Output data | Year: 2022, Volume: 213, Number: 3, Pages: 283-299 Pages count : 17 DOI: 10.1070/SM9507 | ||
Tags | base solution; incompressible viscoelastic polymeric medium; infinite planar channel with perforated walls; linear Lyapunov instability; rheological relation | ||
Authors |
|
||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
2 | Russian Foundation for Basic Research | 19-01-00261-а |
Abstract:
The rheological Pokrovskii-Vinogradov model for flows of solutions or melts of an incompressible viscoelastic polymeric medium is studied in the case of flows in an infinite planar channel with perforated walls. The linear Lyapunov instability is proved for the base solution with constant flow rate in the class of perturbations periodic in the variable varying along the channel wall.
Cite:
Blokhin A.M.
, Tkachev D.L.
Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls
Sbornik Mathematics. 2022. V.213. N3. P.283-299. DOI: 10.1070/SM9507 WOS Scopus РИНЦ OpenAlex
Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls
Sbornik Mathematics. 2022. V.213. N3. P.283-299. DOI: 10.1070/SM9507 WOS Scopus РИНЦ OpenAlex
Original:
Блохин А.М.
, Ткачев Д.Л.
Неустойчивость по Ляпунову стационарных течений полимерной жидкости в канале с перфорированными стенками
Математический сборник. 2022. Т.213. №3. С.3-20. DOI: 10.4213/sm9507 РИНЦ OpenAlex
Неустойчивость по Ляпунову стационарных течений полимерной жидкости в канале с перфорированными стенками
Математический сборник. 2022. Т.213. №3. С.3-20. DOI: 10.4213/sm9507 РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000794962900001 |
Scopus: | 2-s2.0-85132447187 |
Elibrary: | 48722693 |
OpenAlex: | W4205802077 |