Sciact
  • EN
  • RU

Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls Full article

Journal Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802
Output data Year: 2022, Volume: 213, Number: 3, Pages: 283-299 Pages count : 17 DOI: 10.1070/SM9507
Tags base solution; incompressible viscoelastic polymeric medium; infinite planar channel with perforated walls; linear Lyapunov instability; rheological relation
Authors Blokhin A.M. 1 , Tkachev D.L. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russian Federation

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0008
2 Russian Foundation for Basic Research 19-01-00261-а

Abstract: The rheological Pokrovskii-Vinogradov model for flows of solutions or melts of an incompressible viscoelastic polymeric medium is studied in the case of flows in an infinite planar channel with perforated walls. The linear Lyapunov instability is proved for the base solution with constant flow rate in the class of perturbations periodic in the variable varying along the channel wall.
Cite: Blokhin A.M. , Tkachev D.L.
Lyapunov instability of stationary flows of a polymeric fluid in a channel with perforated walls
Sbornik Mathematics. 2022. V.213. N3. P.283-299. DOI: 10.1070/SM9507 WOS Scopus РИНЦ OpenAlex
Original: Блохин А.М. , Ткачев Д.Л.
Неустойчивость по Ляпунову стационарных течений полимерной жидкости в канале с перфорированными стенками
Математический сборник. 2022. Т.213. №3. С.3-20. DOI: 10.4213/sm9507 РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000794962900001
Scopus: 2-s2.0-85132447187
Elibrary: 48722693
OpenAlex: W4205802077
Citing:
DB Citing
Scopus 2
Web of science 2
OpenAlex 3
Elibrary 2
Altmetrics: