The group Cp4×Cq is a DCI-group Full article
Journal |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2022, Volume: 345, Number: 3, Article number : 112705, Pages count : DOI: 10.1016/j.disc.2021.112705 | ||||||
Tags | DCI-group; Isomorphism; Schur ring | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
We prove that the group Cp4×Cq is a DCI-group for distinct primes p and q, that is, two Cayley digraphs over Cp4×Cq are isomorphic if and only if their connection sets are conjugate by a group automorphism. © 2021 Elsevier B.V.
Cite:
Kovács I.
, Ryabov G.
The group Cp4×Cq is a DCI-group
Discrete Mathematics. 2022. V.345. N3. 112705 . DOI: 10.1016/j.disc.2021.112705 WOS Scopus РИНЦ OpenAlex
The group Cp4×Cq is a DCI-group
Discrete Mathematics. 2022. V.345. N3. 112705 . DOI: 10.1016/j.disc.2021.112705 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000726985000004 |
Scopus: | 2-s2.0-85119446399 |
Elibrary: | 47528770 |
OpenAlex: | W3216457543 |