On WL-rank of Deza Cayley graphs Full article
Journal |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 345, Number: 2, Article number : 112692, Pages count : DOI: 10.1016/j.disc.2021.112692 | ||||
Tags | Cayley graphs; Deza graphs; WL-rank | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
The WL-rank of a graph Γ is defined to be the rank of the coherent configuration of Γ. We construct a new infinite family of strictly Deza Cayley graphs for which the WL-rank is equal to the number of vertices. The graphs from this family are divisible design and integral. © 2021 Elsevier B.V.
Cite:
Churikov D.
, Ryabov G.
On WL-rank of Deza Cayley graphs
Discrete Mathematics. 2022. V.345. N2. 112692 . DOI: 10.1016/j.disc.2021.112692 WOS Scopus РИНЦ OpenAlex
On WL-rank of Deza Cayley graphs
Discrete Mathematics. 2022. V.345. N2. 112692 . DOI: 10.1016/j.disc.2021.112692 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000712866400006 |
Scopus: | 2-s2.0-85117763223 |
Elibrary: | 47517154 |
OpenAlex: | W3208352194 |