Embedding in MDS codes and Latin cubes Full article
Journal |
Journal of Combinatorial Designs
ISSN: 1063-8539 |
||
---|---|---|---|
Output data | Year: 2022, Volume: 30, Number: 9, Pages: 626-633 Pages count : 8 DOI: 10.1002/jcd.21849 | ||
Tags | embedding; Latin cube; Latin square; MDS code; MOLS | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | 0314-2019-0017 |
Abstract:
An embedding of a code is a mapping that preserves distances between codewords. We prove that any code with code distance (Formula presented.) and length (Formula presented.) can be embedded into an maximum distance separable (MDS) code with the same code distance and length but under a larger alphabet. As a corollary we obtain embeddings of systems of partial mutually orthogonal Latin cubes and (Formula presented.) -ary quasigroups. © 2022 Wiley Periodicals LLC.
Cite:
Potapov V.N.
Embedding in MDS codes and Latin cubes
Journal of Combinatorial Designs. 2022. V.30. N9. P.626-633. DOI: 10.1002/jcd.21849 WOS Scopus РИНЦ OpenAlex
Embedding in MDS codes and Latin cubes
Journal of Combinatorial Designs. 2022. V.30. N9. P.626-633. DOI: 10.1002/jcd.21849 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000812922000001 |
Scopus: | 2-s2.0-85132157946 |
Elibrary: | 49149483 |
OpenAlex: | W3202734945 |