Sciact
  • EN
  • RU

Embedding in MDS codes and Latin cubes Full article

Journal Journal of Combinatorial Designs
ISSN: 1063-8539
Output data Year: 2022, Volume: 30, Number: 9, Pages: 626-633 Pages count : 8 DOI: 10.1002/jcd.21849
Tags embedding; Latin cube; Latin square; MDS code; MOLS
Authors Potapov V.N. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0017

Abstract: An embedding of a code is a mapping that preserves distances between codewords. We prove that any code with code distance (Formula presented.) and length (Formula presented.) can be embedded into an maximum distance separable (MDS) code with the same code distance and length but under a larger alphabet. As a corollary we obtain embeddings of systems of partial mutually orthogonal Latin cubes and (Formula presented.) -ary quasigroups. © 2022 Wiley Periodicals LLC.
Cite: Potapov V.N.
Embedding in MDS codes and Latin cubes
Journal of Combinatorial Designs. 2022. V.30. N9. P.626-633. DOI: 10.1002/jcd.21849 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000812922000001
Scopus: 2-s2.0-85132157946
Elibrary: 49149483
OpenAlex: W3202734945
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 1
Elibrary 1
Altmetrics: