Sciact
  • EN
  • RU

On the Core and Shapley Value for Regular Polynomial Games Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2022, Volume: 63, Number: 1, Pages: 65-78 Pages count : 14 DOI: 10.1134/S0037446622010050
Tags $ (v,c) $-integral; 519.83; generalized Owen extension; polynomial cooperative game; Shapley value; support function of the core
Authors Vasil’ev V.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Funding (2)

1 Sobolev Institute of Mathematics 0314-2019-0018
2 Russian Foundation for Basic Research 19-10-00910

Abstract: Considering some classes of polynomial cooperative games, we describethe integral representation of the Shapley values and the support functionsof their cores. Also, we analyze the relationship between the Shapley valuesand the polar forms of homogeneous polynomial games. The found formula for the supportfunction of the core of a convex game is applied for the dual descriptionof the Harsanyi sets of finite cooperative games. The main peculiarity of the proposedapproach to the study of optimal solutions of game theory is a systematic useof the extensions of polynomial set functions to the corresponding measures on symmetricpowers of the initial measure spaces. © 2022, Pleiades Publishing, Ltd.
Cite: Vasil’ev V.A.
On the Core and Shapley Value for Regular Polynomial Games
Siberian Mathematical Journal. 2022. V.63. N1. P.65-78. DOI: 10.1134/S0037446622010050 WOS Scopus РИНЦ OpenAlex
Original: Васильев В.А.
О ядре и значении Шепли для регулярных полиномиальных игр
Сибирский математический журнал. 2022. Т.63. №1. С.77–94. DOI: 10.33048/smzh.2022.63.105 РИНЦ
Identifiers:
Web of science: WOS:000749276800005
Scopus: 2-s2.0-85123621358
Elibrary: 48145724
OpenAlex: W4210528149
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 2
Elibrary 2
Altmetrics: