On the isomorphism problem for some classes of computable algebraic structures Full article
Journal |
Archive for Mathematical Logic
ISSN: 0933-5846 , E-ISSN: 1432-0665 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2022, Volume: 61, Number: 5-6, Pages: 813-825 Pages count : 13 DOI: 10.1007/s00153-021-00811-5 | ||||||||||
Tags | Computable structure; Distributive lattice; Effective transformation; Isomorphism problem; Nilpotent structure | ||||||||||
Authors |
|
||||||||||
Affiliations |
|
Abstract:
We establish that the isomorphism problem for the classes of computable nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups is Σ11-complete, which is as complicated as possible. The method we use is based on uniform effective interpretations of computable binary relations into computable structures from the corresponding algebraic classes.
Cite:
Harizanov V.S.
, Lempp S.
, McCoy C.F.D.
, Morozov A.S.
, Solomon R.
On the isomorphism problem for some classes of computable algebraic structures
Archive for Mathematical Logic. 2022. V.61. N5-6. P.813-825. DOI: 10.1007/s00153-021-00811-5 WOS Scopus РИНЦ OpenAlex
On the isomorphism problem for some classes of computable algebraic structures
Archive for Mathematical Logic. 2022. V.61. N5-6. P.813-825. DOI: 10.1007/s00153-021-00811-5 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000744774600001 |
Scopus: | 2-s2.0-85123257300 |
Elibrary: | 48145047 |
OpenAlex: | W4206777607 |