Rota–Baxter operators of nonzero weight on the matrix algebra of order three Full article
Journal |
Linear and Multilinear Algebra
ISSN: 0308-1087 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 70, Number: 6, Pages: 1055-1080 Pages count : 26 DOI: 10.1080/03081087.2020.1751036 | ||||
Tags | 16W99; matrix algebra; Rota–Baxter operator; sum of fields | ||||
Authors |
|
||||
Affiliations |
|
Funding (2)
1 | Russian Science Foundation | 19-11-00039 |
2 | Sobolev Institute of Mathematics | 0314-2019-0001 |
Abstract:
We classify all Rota–Baxter operators of nonzero weight on the matrix algebra of order three over an algebraically closed field of characteristic zero which do not arise from the decompositions of the entire algebra into a direct vector space sum of two subalgebras.
Cite:
Goncharov M.
, Gubarev V.
Rota–Baxter operators of nonzero weight on the matrix algebra of order three
Linear and Multilinear Algebra. 2022. V.70. N6. P.1055-1080. DOI: 10.1080/03081087.2020.1751036 WOS Scopus РИНЦ OpenAlex
Rota–Baxter operators of nonzero weight on the matrix algebra of order three
Linear and Multilinear Algebra. 2022. V.70. N6. P.1055-1080. DOI: 10.1080/03081087.2020.1751036 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000557997500001 |
Scopus: | 2-s2.0-85083551331 |
Elibrary: | 43271505 |
OpenAlex: | W3016238707 |