Sub-Riemannian Properties of Level Sets of Non-Contact Mappings of Heisenberg Group Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 33, Number: 1, Pages: 28-38 Pages count : 11 DOI: 10.1134/S1055134423010030 | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
A model example of non-contact mappings of Heisenberg groups is considered, where the dimension of the preimage is greater than the dimension of the image. The metric properties of level surfaces are derived and the coarea formula analog is proved.
Cite:
Karmanova M.B.
Sub-Riemannian Properties of Level Sets of Non-Contact Mappings of Heisenberg Group
Siberian Advances in Mathematics. 2023. V.33. N1. P.28-38. DOI: 10.1134/S1055134423010030 Scopus РИНЦ OpenAlex
Sub-Riemannian Properties of Level Sets of Non-Contact Mappings of Heisenberg Group
Siberian Advances in Mathematics. 2023. V.33. N1. P.28-38. DOI: 10.1134/S1055134423010030 Scopus РИНЦ OpenAlex
Original:
Карманова М.Б.
Субримановы свойства множеств уровня неконтактных отображений групп Гейзенберга
Математические труды. 2022. Т.25. №2. С.107-125. DOI: 10.33048/mattrudy.2022.25.204 РИНЦ
Субримановы свойства множеств уровня неконтактных отображений групп Гейзенберга
Математические труды. 2022. Т.25. №2. С.107-125. DOI: 10.33048/mattrudy.2022.25.204 РИНЦ
Dates:
Accepted: | Sep 27, 2022 |
Published online: | Mar 24, 2023 |
Identifiers:
Scopus: | 2-s2.0-85150980864 |
Elibrary: | 61170133 |
OpenAlex: | W4360879515 |